Table III. Summary of Relative Rates of Some Primary Tosylates in Various Solvents

Solvent	Temp, °C					
		Me	Et	<i>n</i> -Pr	<i>i</i> -Bu	neoPen
EtOH ^a	75.0	4040	1750	1140	78	1.0
AcOH⁰	75.0	10	9.2	7.3	2.8	1.0
HCOOH ^a	75.0	1.0	1.8	1.2	2.2	1.8
CF ₃ COOH ^b	75.0	1.0	12.5	93	3060	6000
06 % H₂SO₄°	30	1.0	26	530	7500	50,000
FSO₃H ^a	44	1.0	118	3.3×10^{4}	5.4×10^{5}	1.14×10^{6}

^a Reference 10. ^b Reference 2. ^c Reference 3a. ^d 1.0 M KFSO₃.

AcOH¹⁰ to HCOOH¹⁰ to CF₃COOH² to H₂SO₄^{3a} to FSO₃H, is visually apparent in Figure 1 where log k_t is plotted vs. the Taft σ^* for R.¹¹ Thus, in going from EtOH to FSO₃H, the MeOTs/neoPenOTs rate ratio changes by a factor of ca. 10.¹⁰ Of the solvolyzing solvents listed in Table III, FSO₃H seems to be the most efficient in promoting a high k_{Δ}/k_s ratio for a marginal RCH₂OTs case such as *n*-PrOTs.

Besides the structural rate sequences in the different solvents, it is interesting to compare the solvent-rate sequences for the different primary RCH₂OTs substrates. Thus, the solvent sequence of k_t values for MeOTs, whose solvolysis depends on a blend of nucleophilicity and ionizing power of solvent, is EtOH > $AcOH < HCOOH > CF_{3}COOH < H_{2}SO_{4} < FSO_{3}H$ the smallest k_t being observed in CF₃COOH. For EtOTs and *n*-PrOTs, the variation of k_t with solvent is similar, but the changes are not as pronounced. Because of the k_{Δ} contribution, the k_t for *n*-PrOTs in CF₃-COOH is now large enough that AcOH provides the smallest k_t . For *i*-BuOTs, with k_{Δ} now more dominant, the solvent sequence is EtOH > AcOH <HCOOH < CF₃COOH < H₂SO₄ < FSO₃H, k_t in CF3COOH exceeding that in EtOH, AcOH, or HCOOH. Finally, for neoPenOTs, for which k_{Δ} is dominant in all six solvents, the solvent sequence reflects ionizing power but not nucleophilicity. For this substrate the sequence is EtOH < AcOH < $HCOOH < CF_{3}COOH < H_{2}SO_{4} < FSO_{3}H.$

In recent times, FSO₃H has become a very useful solvent for direct observation¹² of carbonium ions. It is thus interesting to place this solvent on a scale of ionizing power along with the more conventional solvents. Using the k_{Δ} for *n*-propyl tosylate,² which reflects ionizing power and not nucleophilicity, the relative rates at 30° for the solvent sequence EtOH-AcOH-HCOOH-CF₃COOH-H₂SO₄-FSO₃H (1.0 *M* KFSO₃)-FSO₃H are *ca.* 0.4:1.0:80:6.0 × 10³:2.5 × 10⁸:8.5 × 10¹¹:1.4 × 10¹³. The k_{Δ} for *n*-PrOTs is only 0.85 times as sensitive² to solvent change as is neophyl-OTs. Thus, a scale¹³ based on neophyl-OTs makes FSO₃H *ca.* 10¹⁵ times more ionizing than AcOH.

Regarding the nature of the solvolysis of ROTs substrates in FSO₃H solvent, it is interesting that rate is depressed by KFSO₃, the rate tending to be approximately inversely proportional to the KFSO₃ concentration. This is in line with a rate-determining C-O heterolysis in the conjugate acid, ROTsH⁺ (eq 2), a small amount of which is in equilibrium with the unprotonated ROTs in FSO₃H containing added KFSO₃ (eq 1). That the equilibrium in eq 1 should lie to the left is expected from what is known regarding the acidity¹² of FSO₃H and the basicity of ROTs substrates.¹⁴ Thus, for the solvolysis rates in Tables I and II the ground-state ROTs substrates are largely unprotonated, while the corresponding transition states are fully protonated.

$$ROT_{s} + FSO_{s}H \implies ROT_{s}H^{+} + FSO_{s}^{-}$$
 (1)

$$ROT_{s}H^{+} \longrightarrow R^{+} + HOT_{s}$$
 (2)

Acknowledgment. We thank Dr. P. Myhre for helpful discussions and information prior to publication about the behavior of the alkyl tosylates in concentrated H_2SO_4 .

(14) Using the K_b for MeOSO₂Me in H₂SO₄ of 10⁻⁴ mol/kg^{15a} and the 10-fold increase in K_b for MeNO₂ between H₃SO₄ and FSO₃H, ^{15b} we can estimate a K_b of 10⁻³ mol/kg for MeOSO₂Me in FSO₃H. On the basis of such a K_b , 0.4 M ROTs is only 5% protonated in FSO₃H and only 0.1% protonated in the presence of 1.0 M KFSO₃.

 (15) (a) S. K. Hall and E. A. Robinson, *Can. J. Chem.*, 42, 1113
 (1964); (b) J. Barr, R. J. Gillespie, and R. C. Thompson, *Inorg. Chem.*, 3, 1149 (1964).

A. Diaz, I. Lazdins Reich, S. Winstein

Contribution No. 2414, Department of Chemistry University of California, Los Angeles, California 90024 Received June 9, 1969

Solvolysis of Primary Alkyl Toluenesulfonates in Concentrated Sulfuric Acid. Evidence of Hydrogen Participation^{1,2}

Sir:

The response of a hydrogen or an alkyl group to positive charge developing at neighboring carbon has long been a subject of study and discussion. In accompanying communications,³ Winstein and coworkers show that the use of CF₃COOH and HSO₃F as solvents for solvolysis studies permits structural differentiation and characterization of this response in some of the simplest alkyl systems. We report here related studies of alkyl *p*-toluenesulfonate (tosylate) solvolysis in 96 % H₂SO₄.

The pattern of solvolysis rates ($10^{5}k$, sec⁻¹, at 30°) of methyl (0.06), ethyl (1.55), propyl (32.1), isobutyl (450), and neopentyl (>3000) tosylate (0.2 *M*) in 96% H₂SO₄ presents a striking departure from that observed

⁽¹¹⁾ R. W. Taft, Jr., in "Steric Effects in Organic Chemistry," M. S. Newman, Ed., John Wiley & Sons, Inc., New York, N. Y., 1956, p 556 ff.

⁽¹²⁾ R. J. Gillespie, Accounts Chem. Res., 1, 202 (1968).

⁽¹³⁾ S. G. Smith, A. H. Fainberg, and S. Winstein, J. Amer. Chem. Soc., 83, 618 (1961).

⁽¹⁾ Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

⁽²⁾ P. C. Myhre and K. S. Brown, presented, in part, at the 155th National Meeting of the American Chemical Society, San Francisco, Calif., April 1968, Abstract P 194.

^{(3) (}a) I. L. Reich, A. Diaz, and S. Winstein, J. Amer. Chem. Soc., 91, 5635 (1969); (b) *ibid.*, 91, 5637 (1969).

Figure 1. Nmr spectrum (CCl₄) of the 1,2-dibromopropane isolated from 96% sulfuric acid solvolysis of propyl-2,2-d2 tosylate with bromine trapping. The expanded spectrum of the methylene proton region shows the anticipated AB quartet split by weak coupling with vicinal deuterium into a quartet of triplets. The absorptions at the A and B band origins, 22% of the area (36 mole %), represent the 1,2-dibromopropane-1,2-d₂ in the sample mixture.

in conventional solvent systems (HOAc,⁴ HCOOH,⁴ H_2O^5) but parallels the trends that are observed in CF3COOH and HSO3F.³ The large rate spread in H_2SO_4 (ca. 5 \times 10⁴) appears to reflect a difference in the ability of alkyl groups to respond to increased demands for internal stabilization upon solvolysis in this weakly nucleophilic ionizing solvent.⁶ The nature and timing of this internal response are delineated by isotope-effect measurements and first-formed product characterizations.

Solvolysis of CH₃CD₂OTs in 96 % H₂SO₄ at 30° proceeds with <5% rearrangement after nine half-lives (nmr). The α -d (1.18 \pm 0.02) and β -d (1.20 \pm 0.03) isotope effects are larger than normal,⁷ but they are significantly less than isotope effects associated with limiting solvolysis.8

By contrast, propyl tosylate undergoes solvolysis in 96% H₂SO₄ to yield greater than 95% isopropyl prod-

(4) (a) S. Winstein and H. Marshall, J. Amer. Chem. Soc., 74, 1120 (1952); (b) W. Pritzkow and K. Schoppler, Chem. Ber., 89, 834 (1962).

(5) R. E. Robertson, Progr. Phys. Org. Chem., 4, 213 (1967).

(6) Rates of solvolysis of propyl tosylate in concentrated H₂SO₄ show a good linear correlation with the h_0 function. This implicates the conjugate acid (neutral leaving group) as the reactive species in H_2SO_4 solvolyses.

(7) Compare with recent isotope effect data of A. Streitwieser, Jr., C. L. Wilkens, and E. Kiehlmann, J. Amer. Chem. Soc., 90, 1598 (1968).

(8) E. A. Halevi, Progr. Phys. Org. Chem., 1, 109 (1963).

Figure 2. Nmr spectrum of 1,2-dibromopropane isolated from 96% H₂SO₄ solvolysis of propyl-2-d₁ tosylate with bromine trapping. The upper-right insert shows an expanded sweep and representative integral of the methyl proton region.

ucts.⁹ The rate of solvolysis, monitored by the change in the aromatic proton pattern (nmr) or the formation of p-toluenesulfonic acid (uv),¹⁰ is identical with the rate of rearrangement, monitored by the disappearance of the C-1 methylene proton absorption of propyl tosylate (nmr).¹¹

Characterization of the solvolytic rearrangement of propyl tosylate as an intramolecular hydrogen transfer is complicated by the very rapid rate of exchange of the isopropyl methyl hydrogens with solvent H_2SO_4 .^{13,14} However, the ability to trap first-formed propene as 1,2-dibromopropane permits the necessary and sufficient tests. Thus, 1,2-dibromopropane was isolated (60%)by preparative glpc) from H_2SO_4 solvolysis of propyl tosylate by conducting the reaction in the presence of vigorously mixed solutions of bromine and carbon

(9) The major product is isopropyl hydrogen sulfate plus some isopropyloxonium ion. The product ratio can be simulated by mixing 96% H_2SO_4 with isopropyl alcohol: C. M. Suter and E. Oberg, J. Amer. Chem. Soc., 56, 678 (1934).

(10) C. G. Swain and C. Morgan, J. Org. Chem., 29, 2097 (1964).
(11) For propyl-2,2-d₂ tosylate (0.2 M, 96% H₂SO₄), however, simultaneous measurements indicate that the rate of solvolysis (uv) is slightly slower (about 5%) than the rate of disappearance of the C-1 methylene protons (nmr). This observation is compatible with a small fraction of the solvolysis (with attendant deuterium scrambling) proceeding via a protonated cyclopropane.12

(12) G. J. Karabatsos, J. L. Fry, and S. Meyerson, Tetrahedron Lett., 3735 (1967).

(13) No isopropyl methyl hydrogen can be detected in the nmr upon D2SO4 solvolysis of propyl tosylate; cf. N. C. Deno, et al., J. Amer. Chem. Soc., 90, 6457 (1968).

(14) V. Gold and R. S. Satchell, J. Chem. Soc., 1938 (1963).

tetrachloride. When D_2SO_4 was used, the dibromopropane isolated contained less than 1 atom % deuterium (mass spectrum). Solvolytic rearrangement of propyl-2,2- d_2 tosylate in 96% H₂SO₄ with bromine trapping of products yielded a mixture of dideuterioand monodeuterio-1,2-dibromopropanes, consistent with the scheme shown in eq 1, where an isotope effect in elimination to form propene ($k_{\rm H}/k_{\rm D}$)_{elim} of 2.0 is assumed, ¹⁵ and secondary isotope effects in elimination are neglected in the calculation of the product distribution. Mass spectral fragmentation patterns and the nmr spectrum (Figure 1) of the dibromide product are consistent with the distribution predicted.

Sulfuric acid solvolysis of propyl-2- d_1 tosylate and product trapping with bromine yielded mainly monodeuterio-1,2-dibromopropane. By integration of the methyl singlet with respect to the methyl doublet (Figure 2) and making appropriate corrections for deuterium affixed to the methyl carbon, an intramolecular (product) isotope effect $(k_{\rm H}/k_{\rm D})_{\rm intra}$ of 2.1 \pm 0.3 was obtained. This value may be compared with the intermolecular (kinetic) isotope effect $(k_{\rm H}/k_{\beta-d_2})$ of 1.85 \pm 0.10 determined by both direct measurements of rates of solvolysis of propyl and propyl-2,2- d_2 tosylates and by competitive intermolecular rate studies.¹⁸

Application of bromine-trapping procedures to the 96% H₂SO₄ solvolysis of isobutyl tosylate at 0° led to the isolation and identification of a mixture of di- and tribromobutanes: 1,2-dibromo-2-methylpropane (1), 35%; meso- and dl-2,3-dibromobutane (2), 38%; 1,2,3tribromo-2-methylpropane (3), 22%; other tribromobutanes (4), ca. 5%.¹⁷ Parallel solvolysis of isobutyl-2- d_1 tosylate in 96% H₂SO₄ with bromine trapping yielded 1 (90% d_1), 21%; 2 (82% d_1), 55%; 3, 13%; 11%. A product-distribution isotope effect $(k_{\rm H}/k_{\rm D})_{\rm prod}$ of 2.4 is estimated by assuming that products 1 and 3 represent hydrogen migration and 2 and 4 represent methyl migration. Competitive solvolysis of mixtures of isobutyl and isobutyl- d_1 tosylate yield a kinetic isotope effect $(k_{\rm H}/k_{\beta-d_1})$ of 1.9 \pm 0.1. Upon

(15) S. Ehrenson, S. Seltzer, and R. Diffenbach, J. Amer. Chem. Soc., 87, 563 (1965).

(16) Competitive rate studies were conducted by solvolyzing equimolar mixtures of labeled and unlabeled alkyl tosylates and isolating the unconsumed alkyl tosylates from measured aliquots. The extent of over-all reaction was determined by uv analysis, ¹⁰ and the H/D ratio in the unconsumed reactant was determined by mass spectrometry.

(17) Substitution accompanying addition is well documented.¹⁸ We presume that the tribromobutanes isolated are formed by substitution followed by addition.

(18) P. B. D. de la Mare and R. Bolton, "Electrophilic Addition to Unsaturated Systems," Elsevier Publishing Co., New York, N. Y., 1966. correction for the hydrogen: methyl migration ratio a value of 2.4 is obtained, in accord with the observed product-distribution isotope effect.

The treatment of solvolysis reactions of alkyl derivatives in terms of two competing pathways, anchimerically assisted (k_{Δ}) and anchimerically unassisted (k_s) , has long been advocated and repeatedly explored by Winstein and coworkers.¹⁹ Inherent in this treatment is the expectation that assistance by a neighboring group should become increasingly important as the nucleophilicity of the ionizing solvent decreases.²⁰ The 96% H₂SO₄ as well as the CF₃COOH^{3a} solvolysis studies of primary alkyl tosylates appear as striking realizations of this expectation. The rate-limiting character of hydrogen transfer in H₂SO₄ solvolysis of propyl and isobutyl tosylates is substantiated by the near congruence of the intermolecular (kinetic) and intramolecular (product) isotope effects. Bromine trapping permits estimates of hydrogen: methyl migration rates under solvolytic conditions that do not permit direct detection of first-formed products.

The apparent enhancements of k_{Δ} processes observed in weakly nucleophilic solvents such as CF₃COOH and H₂SO₄ are indeed instructive. They lead one to reconsider the question: can solvolytic conditions be found which force neighboring hydrogen participation of simple ethyl derivatives? Experiments directed toward an answer are the subject of the next communication.²¹

Acknowledgment. We thank Professor S. Winstein and Dr. A. Diaz for a number of helpful discussions and information prior to publication concerning solvolysis of alkyl tosylates in CF_3COOH and HSO_3F .

(19) S. Winstein, C. R. Lindegren, H. Marshall, and L. L. Ingraham, J. Amer. Chem. Soc., 75, 148 (1953).

(20) A. Diaz, I. Lazdins, and S. Winstein, *ibid.*, 90, 6546 (1968), and references cited therein.

(21) P. C. Myhre and E. Evans, ibid., 91, 5641 (1969).

(22) National Science Foundation Undergraduate Research Participant, 1965-1966.

> Philip C. Myhre, Kenneth S. Brown²² Department of Chemistry, Harvey Mudd College Claremont, California 91711 Received June 9, 1969

Solvolysis of Ethyl Tosylate in HSO₃F

Sir:

Accumulating data provide important support for the view that neighboring group participation in solvolysis reactions is strongly enhanced in weakly nucleophilic ionizing solvents.¹ Correlations of the effect of these solvents on the k_{Δ} and $k_{\rm s}$ modes of solvolysis of simple primary alkyl tosylates have been discussed in the accompanying communications.^{1g,h} Propyl tosylate exhibits a striking change in solvolytic behavior upon variation of solvent: <1% rearrangement in HCOOH,² 89% rearrangement in CF₃COOH,^{1g} and essentially

^{(1) (}a) S. Winstein and R. Heck, J. Amer. Chem. Soc., 78, 4801 (1956); (b) P. E. Peterson, et al., ibid., 89, 5902 (1967), and references therein; (c) J. E. Nordlander and W. G. Deadman, ibid., 90, 1590 (1968); (d) A. Diaz, I. Lazdins, and S. Winstein, ibid., 90, 6546 (1968); (e) W. G. Dauben and J. L. Chitwood, ibid., 90, 6876 (1968); (f) P. C. Myhre and K. S. Brown, ibid., 91, 5639 (1969); (g) I. L. Reich, A. Diaz, and S. Winstein, ibid., 91, 5635 (1969); (h) A. Diaz, I. L. Reich, and S. Winstein, ibid., 5637 (1969).

⁽²⁾ C. C. Lee and J. E. Kruger, Can. J. Chem., 44, 2343 (1966).